## Jyväskylä Summer School, 2021

Take-Home problem for the course
"Differential calculus on the Wasserstein space and mean field games"
To be sent to cardaliaguet@ceremade.dauphine.fr by 2021-09-06
In this problem, $\mathcal{P}_{2}=\mathcal{P}_{2}(\mathbb{R})$ is the space of probability measures on $\mathbb{R}$ endowed with the 2 - Wasserstein distance $\mathbf{d}_{2}$. We say that a map $U: \mathcal{P}_{2} \rightarrow \mathbb{R}$ is $C^{2}$ if

- $U$ has an $L^{2}$-derivative $\frac{\delta U}{\delta m}$ which has itself an $L^{2}$-derivative $\frac{\delta^{2} U}{\delta m^{2}}: \mathcal{P}_{2} \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ with

$$
\frac{\delta^{2} U}{\delta m^{2}}\left(m, y, y^{\prime}\right):=\frac{\delta}{\delta m}\left(\frac{\delta U(\cdot, y)}{\delta m}\right)\left(m, y^{\prime}\right)
$$

- $\frac{\delta^{2} U}{\delta m^{2}}$ is continuously differentiable in the last two variables with $D_{m} U(m, y):=D_{y} \frac{\delta U}{\delta m}(m, y)$ and $D_{m m}^{2} U\left(m, y, y^{\prime}\right):=D_{y^{\prime}} D_{y} \frac{\delta^{2} U}{\delta m^{2}}\left(m, y, y^{\prime}\right)$ continuous and bounded in all variables.

1. (Examples) Let

$$
U_{1}(m)=\int_{\mathbb{R}} \phi(x) m(d x) \text { and } U_{2}(m)=\int_{\mathbb{R} \times \mathbb{R}} \psi(x, y) m(d x) m(d y) \quad \forall m \in \mathcal{P}_{2}
$$

where $\phi: \mathbb{R} \rightarrow \mathbb{R}$ and $\psi: \mathbb{R} \times \mathbb{R}$ are Borel measurable and bounded maps. Give conditions on $\phi$ and $\psi$ ensuring that $U_{1}$ and $U_{2}$ are $C^{2}$ and compute $D_{m} U_{1}, D_{m} U_{2}, D_{m m}^{2} U_{1}$ and $D_{m m}^{2} U_{2}$.
2. (Finite dimensional projections) From now on we assume that $U: \mathcal{P}_{2} \rightarrow \mathbb{R}$ is $C^{2}$ and set

$$
U^{N}(\mathbf{x})=U^{N}\left(x_{1}, \ldots, x_{N}\right):=U\left(m_{\mathbf{x}}^{N}\right) \quad \forall \mathbf{x}=\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{R}^{N}
$$

where $m_{\mathbf{x}}^{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{x_{i}}$. We have seen in the course that $U^{N}$ is of class $C^{1}$ on $\mathbb{R}^{N}$ with

$$
D_{x_{i}} U^{N}(\mathbf{x})=\frac{1}{N} D_{m} U\left(m_{\mathbf{x}}^{N}, x_{i}\right) \quad \forall \mathbf{x} \in \mathbb{R}^{N}, i \in\{1, \ldots, N\}
$$

Show that $U^{N}$ is of class $C^{2}$ on $\mathbb{R}^{N}$ with

$$
\begin{gathered}
D_{x_{i} x_{j}}^{2} U^{N}(\mathbf{x})=\frac{1}{N^{2}} D_{m m}^{2} U\left(m_{\mathbf{x}}^{N}, x_{i}, x_{j}\right) \quad \forall \mathbf{x} \in \mathbb{R}^{N}, i, j \in\{1, \ldots, N\}, i \neq j \\
\text { and } D_{x_{i} x_{i}}^{2} U^{N}(\mathbf{x})=\frac{1}{N^{2}} D_{m m}^{2} U\left(m_{\mathbf{x}}^{N}, x_{i}, x_{i}\right)+\frac{1}{N} D_{y} D_{m} U\left(m_{\mathbf{x}}^{N}, x_{i}\right) \quad \forall \mathbf{x} \in \mathbb{R}^{N}, i \in\{1, \ldots, N\} .
\end{gathered}
$$

3. Let $\left(B^{i}\right)$ be a a family of independent 1 -dimensional Brownian motion defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ endowed with a filtration $\left(\mathcal{F}_{t}\right)$ satisfying the usual conditions, let $\left(Z^{i}\right)$ be i.i.d. random variables on $\mathbb{R}$ with $\mathbb{E}\left[\left|Z^{1}\right|^{2}\right]<+\infty$ and independent of the $\left(B^{i}\right)$ and let $\left(\alpha_{t}^{i}\right)$ be i.i.d random processes adapted to $\left(\mathcal{F}_{t}\right)$ such that $\mathbb{E}\left[\int_{0}^{T}\left|\alpha_{t}^{1}\right|^{2} d t\right]<+\infty \forall T>0$. We consider the processes

$$
X_{t}^{i}=Z^{i}+\int_{0}^{t} \alpha_{s}^{i} d s+B_{t}^{i} \quad i \in\{1, \ldots, N\}, t \geq 0
$$

and we define the random measure $m_{\mathbf{X}_{\mathbf{t}}}^{N}$ by $m_{\mathbf{X}_{\mathbf{t}}}^{N}:=\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{t}^{i}}$.
Write Itô's formula between $U^{N}\left(Z^{1}, \ldots, Z^{N}\right)$ and $U^{N}\left(X_{t}^{1}, \cdots, X_{t}^{N}\right)$ in term of $N$, of $m_{\mathbf{X}_{\mathrm{t}}}^{N}$, of the $X^{i}, \alpha^{i}, B^{i}$ and of the derivatives $D_{m} U$ and $D_{m m}^{2} U$.
4. We assume for simplicity that $D_{m} U$ and $D_{m m}^{2} U$ are Lipschitz continuous in all variables. With the notation of the previous question, let $m(t)$ be the law of $X_{t}^{1}$. Admitting that

$$
\mathbb{E}\left[\sup _{t \in[0, T]} \mathbf{d}_{2}\left(m_{\mathbf{X}_{\mathbf{t}}}^{N}, m(t)\right)\right]=0 \quad \forall T>0
$$

(which holds thanks to the law of large numbers), take expectation and pass to the limit as $N \rightarrow+\infty$ in the Itô's formula obtained in the previous question to recover the equality

$$
U(m(t))=U(m(0))+\mathbb{E}\left[\int_{0}^{t}\left(\alpha_{s}^{1} \cdot D_{m} U\left(m(s), X_{s}^{1}\right)+\frac{1}{2} D_{y} D_{m} U\left(m(s), X_{s}^{1}\right)\right) d s\right]
$$

